
 

Universal serial bus digital binary values control pulse  
width modulation utility 

 
DALIBOR SLOVÁK, STANISLAV PLŠEK 

Department of Computer and Communication Systems 
Faculty of Applied Informatics 

Nad Stráněmi 4511 
760 05 Zlín 

CZECH REPUBLIC 
http://www.fai.utb.cz, slovak@fai.utb.cz, splsek@fai.utb.cz 

 
Abstract: This article describes develop of software that generates managing tensions for many various electrical 
devices. As already mentioned the name of it is the firmware that is used to control electric devices through the 
computer. The purpose is to create software interface for managing electrical device which are not available to 
communicate via digital interface protocols or another digital protocols based on binary values. USB device’s 
firmware and their connection cooperate with most of personal computers operating system such as are Windows, 
MacOS and Linux. Our device is protected by CZ Patent No. 304 233 and CZ Utility Model No. 024542. Our device 
is registered at the European Patent Office too. 
 
Key-Words: Control voltage, Microprocessor, single-chip, USB, USB Audio, USB Audio MIDI device, firmware. 
 

1 Introduction 
   The basis for the specification of the firmware is a 
general standard USB 2.0, followed by the standard for 
USB MIDI device and it is based on the actual USB 
Audio standard. At the present time this is widely used 
because MIDI transmission of information via the USB 
is more efficient than transmission of information using 
standard MIDI DIN jacks. DIN occupies too much space 
at the PC case, so the external sound cards are used most 
often with laptops. Placement of DIN connectors in 
notebooks and external sound cards are precluded due to 
the size of DIN connectors. 
    The USB connects USB devices with the USB host. 
The USB physical interconnect is a tiered star topology. 
A hub is the centre of each star. Each wire segment is a 
point-to-point connection between the host and a hub or 
universal serial bus function, or a hub connected to 
another hub or universal serial bus function. 
 

Dalibor Slovák Author is with the Department of Computer and 
Communication systems, Tomas Bata University in Zlin, Faculty of Applied 
Informatics nám. T.G.Masaryka 5555, 760 01 Zlín Czech republic 
(corresponding author to provide phone: +420 576 035 271; 
slovak@fai.utb.cz ) 

Stanislav Plšek is with the Tomas Bata University in Zlín, nám. T. G. 
Masaryka 5555, 760 01 Zlín, Czech Republic (corresponding author to 
provide phone: +420 576 035 274; e-mail: splsek@fai.utb.cz). 
 
 

2 Solution 
   We have developed Universal serial bus digital binary 
values control pulse width modulation device for control 
of most of electrical devices. The paper describes 
firmware part of our solution. During our development 
we had to lay stress on maximally universal firmware 
for all operating systems. Our firmware is compatible 
with each universal serial bus devices which enable to 
reconfigure their firmware. Due to precise keeping of 
necessary norms for all suitable kinds of universal serial 
bus device we created Universal serial bus digital binary 
values control pulse width modulation utility Device 
Firmware compatible with most of operating systems. 
Important USB norms for our development were and 
are: 

2.1. Audio device USB standard 
   As is clear from the chosen theme, USB is entirely 
sufficient transmission capacity for transmission of 
audio data, similarly for MIDI information too. Audio 
equipment to the USB protocol specifications and their 
own appropriate set of descriptors required endpoints 
for transferring audio data. In most cases, it is one of 
several specifications of the equipment because most of 
them is always combined with another USB standards. 
A somewhat different situation is in the case of MIDI 
devices. MIDI USB standard is an extension of standard 

WSEAS TRANSACTIONS on ELECTRONICS Dalibor Slovák, Stanislav Plšek

E-ISSN: 2415-1513 85 Volume 9, 2018

http://www.fai.utb.cz/
mailto:slovak@fai.utb.cz
mailto:splsek@fai.utb.cz
mailto:splsek@fai.utb.cz


USB Audio. Description of the audio data flow is based 
on the relevant standard [10]. 
 

2.1.1.MIDI device USB standard 
   At the beginning it is necessary to say that the typical 
USB MIDI devices belonging to the USB 
Communication Device Class (CDC). It is the same as 
the audio devices are considered as communication 
interfaces. Class description for the USB MIDI device is 
one part of standard USB Audio. This happens when a 
USB device is capable of receiving, respectively send 
MIDI messages. You have to specify the interface on the 
device interface level. USB MIDI device will have two 
interfaces. One is an audio interface, second interface is 
Musical Instrument Digital Interface. This is described 
using the descriptors, so that the device is easily 
identified in the system and was particularly visible for 
the applications that are capable to communicate via 
MIDI protocol. In our case, they were software 
application Cubase SX 2, respectively Cubase SX 3 and 
SX4. Another software were Adobe Audition and Sony 
Soundforge 11. We created own solution and Graphic 
User Interface for our tests too.  
 

2.2. Own test application 
   The application has, inter alia, one settings window. 
User sees all universal serial bus audio musical 
instruments devices at the upper combo box. User can 
choose one device for tests. After device choice, user 
sets values of the MIDI message third byte. The 
parameter is named Velocity. There is able to set 
Velocity parameter for up to eight channels in our 
device. When current control rod is moving, event “Note 
On” is generating. Exact values of Velocity parameter 
serve for check of device reaction due to control voltage 
value changes, respectively for check of whole 
controlled system reaction due to control voltage value 
changes. Control voltage value is generated via Velocity 
parameter. Input value of each controlled values has a 
form of Musical Instruments Digital Interface (MIDI) 
message. The second byte of MIDI message is a number 
identification of each MIDI note – input information for 
controlled device. The value of MIDI message second 
byte sets activity of controlled device’s outputs. 
 

 
Fig. 1. test application – velocity parameter setting 

3 USB Audio MIDI Endpoints and 
Descriptors      

The specifications of endpoints are MIDI Devices 
descriptors well-known as endpoints for MIDI input and 
output jacks. These jacks are of two kinds. Some are 
known as External MIDI In, respectively OUT jacks. 
The second groups are then Embedded MIDI In, 
respectively Embedded OUT jacks. Transmission of the 
MIDI data from the host to the MIDI device and back is 
following.    
   Information passes from Host and it is addressing to 
device via External MIDI OUT jack. Then information 
continues to Embedded MIDI IN jack to device. Now 
information is in device and it is treated. Treated 
information is send back via Embedded MIDI OUT jack 
of this device to External MIDI IN jack of the host.  
   The description is only virtual abstraction. The stave 
has to be programmed within the USB device. 
Everything is numbered via usage the descriptors and it 
is associated together. The relevant descriptor item 
shows, which connector belongs to its counterpart. 
 

3.1.1. Universal Serial Bus Musical Instruments 
Digital Interface firmware descriptors 

Now we describe main descriptors categories for our 
Universal Serial Bus Musical Instruments Digital 
Interface firmware. 
 1. Device Descriptor  
   The Device Descriptors items correspond to the 
standard CDC device class 
2. Configuration Descriptor 
   Like the device descriptor with current configuration 
information. 
3. Standard AC Interface Descriptor 

WSEAS TRANSACTIONS on ELECTRONICS Dalibor Slovák, Stanislav Plšek

E-ISSN: 2415-1513 86 Volume 9, 2018



   Audio Control interface does not have any own 
endpoint. Default endpoint zero is used for 
communication. Class-specific Audio Control requests 
are sent out using default channel. It does not provide 
any endpoints for settings USB device interrupt. 
4. Class-specific AC Interface Descriptor 
   It is always connected with Standard (header) 
descriptor, which contains basic information about audio 
interfaces. It contains all pointers needed to describe a 
group of audio interfaces in conjunction with particular 
audio device. 
5. Standard MIDI Streaming Interface Descriptor 
   Standard Interface Descriptor characterizes the device 
as such. With this this descriptor is specified by the 
internal structure of the USB MIDI device, and further 
detailed description is contained in descriptors, which 
are part of the configuration structure.  
 
 
6. Class-specific MIDI Streaming Interface Header 
Descriptor 
   It provides more (precise) information relating to the 
internal structure of the device. 
7. MIDI IN Jack Descriptor 
   Describes MIDI IN jacks. This parameter is set in the 
bJackType variable. 
8. MIDI OUT Jack Descriptor 
   MIDI OUT Jack Descriptor describes the MIDI OUT 
jacks, as well as MIDI IN descriptor. Its structure is 
added to other items that are necessary for accurate 
specification of the corresponding External links, 
respectively Embedded MIDI IN descriptor. These 
additional items specified each pin of the MIDI OUT 
connector, and his status for data transmission. 
9. Element Descriptor 
   Element Descriptor extends structure MIDI OUT 
descriptor about sum input and check out data station 
further about setting of pertinent other ability USB 
MIDI arrangement . 
10. Standard MIDI Streaming Bulk Data Endpoint 
Descriptor 
   The content of this descriptor is consistent with a 
standard endpoint descriptor as described in chapter 
9.6.4 USB specification [9]. 
11. Class-Specific MS Bulk Data Endpoint Descriptor 
   The bNumEmbMIDIJack structure contains the 
number Embedded MIDI Jacks associated with this 
endpoint. In the event, that it is an input endpoint, then 
embedded jack should be the MIDI OUT. If this is the 
final endpoint, should be the Embedded MIDI IN jack. 
BaAssocJacks structure contains the ID of the embedded 
jacks. 

12. Standard MS Transfer Bulk Data Endpoint 
Descriptor 
   This descriptor also agree with descriptor description 
from USB specifications chapter 9.6.4., then standard 
Endpoint descriptor. BEndpoint Adress field designates 
by the help of D7 parameter, if discuss input transfer 
endpoint or check out transfer endpoint [3]. 

3.2. Universal serial bus data flows 

 
Fig. 2. USB Information Conversion From Client 

Software to Bus 
    
 
The USB supports functional data and control exchange 
between the USB host and a USB device as a set of 
either uni-directional or bi-directional pipes. USB data 
transfers take place between host software and a 
particular endpoint on a USB device. Such associations 
between the host software and a USB device endpoint 
are called pipes. In general, data movement though one 
pipe is independent from the data flow in any other pipe. 

WSEAS TRANSACTIONS on ELECTRONICS Dalibor Slovák, Stanislav Plšek

E-ISSN: 2415-1513 87 Volume 9, 2018



A given USB device may have many pipes. As an 
example, a given USB device could have an endpoint 
that supports a pipe for transporting data to the USB 
device and another endpoint that supports a pipe for 
transporting data from the USB device. All 
communication on the bus is time multiplexed into 
frames 1 millisecond long. Each frame can contain many 
transactions of different devices and different endpoints. 
Data transfer over the bus can be divided into 4 types: 
 

3.2.2.Isochronous transfers  
   Isochronous transfers transport large amounts of data 
(up to 1023 B) is guaranteed delivery time, but does not 
ensure data integrity. Isochronous data is continuous and 
real-time in creation, delivery, and consumption. 
Timing-related information is implied by the steady rate 
at which isochronous data is received and transferred. 
Isochronous data must be delivered at the rate received 
to maintain its timing. In addition to delivery rate, 
isochronous data may also be sensitive to delivery 
delays. For isochronous pipes, the bandwidth required is 
typically based upon the sampling characteristics of the 
associated function. The latency required is related to 
the buffering available at each endpoint. A typical 
example of isochronous data is voice. If the delivery rate 
of these data streams is not maintained, drop-outs in the 
data stream will occur due to buffer or frame underruns 
or overruns. Even if data is delivered at the appropriate 
rate by USB hardware, delivery delays introduced by 
software may degrade applications requiring real-time 
turn-around, such as telephony-based audio 
conferencing. The timely delivery of isochronous data is 
ensured at the expense of potential transient losses in the 
data stream. In other words, any error in electrical 
transmission is not corrected by hardware mechanisms 
such as retries. In practice, the core bit error rate of the 
USB is expected to be small enough not to be an issue. 
USB isochronous data streams are allocated a dedicated 
portion of USB bandwidth to ensure that data can be 
delivered at the desired rate. The USB is also designed 
for minimal delay of isochronous data transfers.  

3.2.3.Bulk transfers  
   Bulk transfers transport of large amounts of data to 
ensure integrity, but is not guaranteed delivery time. 
Bulk data typically consists of larger amounts of data, 
such as that used for printers or scanners. Bulk data is 
sequential. Reliable exchange of data is ensured at the 
hardware level by using error detection in hardware and 
invoking a limited number of retries in hardware. Also, 
the bandwidth taken up by bulk data can vary, 
depending on other bus activities. 

3.2.4.Interrupt transfers 
   Interrupt transfers serve a small amount of data to 
ensure integrity and timely delivery. A limited-latency 
transfer to or from a device is referred to as interrupt 
data. Such data may be presented for transfer by a 
device at any time and is delivered by the USB at a rate 
no slower than is specified by the device. Interrupt data 
typically consists of event notification, characters, or 
coordinates that are organized as one or more bytes. An 
example of interrupt data is the coordinates from a 
pointing device. Although an explicit timing rate is not 
required, interactive data may have response time 
bounds that the USB must support. 

3.2.5.Control transfers 
They are used during initial device setup (enumeration) 
[9]. 

 
Fig. 3.  Layers of universal serial bus communication 

 

4 USB-MIDI Converter 
   USB-MIDI converter is the kernel of every MIDI 
device, it provides a connection between the host and 
USB-MIDI interface. It is the fundamental building 
block. On one hand, it interfaces with the USB pipes, 
which are used to exchange MIDI data between the host 
and USB-MIDI endpoints of the device. On the other 
hand, there is presented an appropriate number of 
embedded MIDI jacks. These embedded jacks are 
logical interface presenting the true connectivity within 
a MIDI device. USB MIDI converter provides a 
connection between the MIDI OUT endpoint and 
relevant Embedded MIDI IN jack. Similarly, it provides 
a link between the Embedded MIDI OUT jack and the 
corresponding MIDI IN endpoint [11].  

WSEAS TRANSACTIONS on ELECTRONICS Dalibor Slovák, Stanislav Plšek

E-ISSN: 2415-1513 88 Volume 9, 2018



 
Fig. 4. USB MIDI Converter scheme 

4.1. MIDI Endpoints and Embedded MIDI Jacks 
   The USB-MIDI Converter typically contains one or 
more MIDI IN and/or MIDI OUT endpoints. These 
endpoints use bulk transfers to exchange data with the 
Host. Consequently, a large quantity of USB-MIDI data 
can simultaneously be sent by an application without 
missing any MIDI events. Therefore, music applications 
can perform complex MIDI operations, including 
sending many MIDI Note On messages at the same time 
to more smoothly play the most complex music. The 
information flowing from the Host to a MIDI OUT 
endpoint is routed to the USB-MIDI function through 
one or more Embedded MIDI IN Jacks, associated with 
that endpoint. Information going to the Host leaves the 
USB-MIDI function through one or more Embedded 
MIDI OUT Jacks and flows through the MIDI IN 
endpoint to which the Embedded MIDI Out Jacks are 
associated. USB-MIDI converters can connect to 
multiple Embedded MIDI Jacks. Each MIDI Endpoint in 
a USB-MIDI converter can be connected to up to 16 
Embedded MIDI Jacks. Each Embedded MIDI Jack 
connected to one MIDI Endpoint is assigned a number 
from 0 to 15. MIDI Data is transferred over the USB in 
32-bit USB MIDI Event Packets, with the first 4 bits 
used to designate the appropriate Embedded MIDI Jack. 
A 32-bit USB-MIDI Event Packet is adopted to 
construct multiplexed MIDI streams (MUX MIDI) that 
can be sent or received by each MIDI Endpoint. At the 
sending end, multiple individual MIDI streams are 
placed into constant sized packets (with cable number) 
and are interleaved into a single MUX MIDI stream. At 
the receiving end, the multiplexed stream is properly 
demultiplexed, the data is extracted from the 32-bit 

USBMIDI Event Packets, and each original MIDI 
stream is routed to the indicated virtual MIDI port. In 
this way, one endpoint can have multiple Embedded 
MIDI Jacks logically assigned. This method makes 
economical 
usage of few endpoints but requires a mux/demux 
process on both ends of the pipe [11].  

4.2. Transfer Endpoints 
   The USB-MIDI Converter can contains one or more 
XFR IN and/or XFR OUT endpoints. These endpoints 
use bulk transfers to exchange data sets between the 
Host and any of the Elements within the USB-MIDI 
function. A mechanism of dynamic association is used 
to link a Transfer endpoint to an Element whenever that 
Element needs out-of-band data sets exchanged with the 
Host. A typical application for this endpoint type of is 
the transfer of down loadable Samples to a Synthesizer 
Element. The same technique could be used to download 
program code to an Element that contains a 
programmable DSP core [5], [10]. 
 

 
Fig. 5. Input Terminal – Output Terminal 

4.3. USB Audio MIDI device GET requests 
This request returns the attribute setting of a specific 
Control inside an Entity of the USB-MIDI function. 
Additionally, the memory space attribute of an Entity 
itself can be returned through this GET request. GET 
request contains following fields. 

4.3.1.bmRequestType field 
The bmRequestType field specifies that this is a GET 
request (D7=0b1). It is a class-specific request 
(D6..5=0b01), directed to either a MIDIStreaming 
interface of the USB-MIDI function (D4..0=0b00001) or 
a bulk endpoint of a MIDIStreaming interface 
(D4..0=0b00010). 
The bRequest field contains a constant, identifying 
which attribute of the addressed Control or Entity is to 
be returned. Possible attributes for a Control are its: 

• Current setting attribute (GET_CUR) 
• Minimum setting attribute (GET_MIN) 
• Maximum setting attribute (GET_MAX) 

WSEAS TRANSACTIONS on ELECTRONICS Dalibor Slovák, Stanislav Plšek

E-ISSN: 2415-1513 89 Volume 9, 2018



• Resolution attribute (GET_RES) 
Possible attributes for an Entity are its: 

• Memory space attribute (GET_MEM) 

4.3.2. wValue field 
The wValue field interpretation is qualified by the value 
in the wIndex field. Depending on what Entity is 
addressed, the layout of the wValue field changes. The 
following paragraphs describe the contents of the 
wValue field for each Entity separately. In most cases, 
the wValue field contains the Control Selector (CS) in 
the high byte. It is used to address a particular Control 
within Entities that can contain multiple Controls. If the 
Entity only contains a single Control, there is no need to 
specify a Control Selector and the wValue field can be 
used to pass additional parameters. 

4.3.3.wIndex field 
The wIndex field specifies the interface or endpoint to 
be addressed in the low byte and the Entity ID or zero in 
the high byte. In case an interface is addressed, the 
virtual Entity ‘interface’ can be addressed by specifying 
zero in the high byte. The values in wIndex must be 
appropriate to the recipient. Only existing Entities in the 
USB-MIDI function can be addressed and only 
appropriate interface or endpoint numbers may be used. 
If the request specifies an unknown or non-Entity ID or 
an unknown interface or endpoint number, the control 
pipe must indicate a stall. 

4.3.4.wLength field 
The actual parameter(s) for the Get request are returned 
in the data stage of the control transfer. The length of 
the parameter block to return is indicated in the wLength 
field of the request. If the parameter block is longer than 
what is indicated in the wLength field, only the initial 
bytes of the parameter block are returned. If the 
parameter block is shorter than what is indicated in the 
wLength field, the device indicates the end of the 
control transfer by sending a short packet when further 
data is requested. The layout of the parameter block is 
qualified by both the bRequest and wIndex fields. Refer 
to the following sections for a detailed description of the 
parameter block layout for all possible Entities [11]. 
 

 
Fig. 6. Complex USB MIDI Device 

 

5 Firmware – the most important 
modules and files 

5.1. User.c and user.h 
   Fundamental module for user needs are two source 
text files user.c and user.h, that contains custom 
functions setting and macro. User makes pertinent 
modification necessary for given functionality of device 
firmware arrangement. There is module separated from 
of others in this text too. There are the adjustments made 
in the case of this software, which is described in this 
paper. All functional treatment for needs device control 
by the help of pulse – width modulation. Starting setting 
is treatment of switched and no switched states for 
individual arrangements, so setting of timer for connect 
or disconnect handled devices via pulse width of control 
voltage [3], [4]. 

5.2. Other important USB communication 
modules 

  typedefs.h - In this file are defineds individual  data 
type.  
interrupt.c a .h - This module contains an 
implementation of interrupt handling both, high and low 
priority.  
  usb.h – This file interlocks nesting needed header file 
to the whole program. Is here possibly remark, that the 
initialization isn't quite full and is necessary is complete 
as need may be single arrangement and their 
functionality. 

WSEAS TRANSACTIONS on ELECTRONICS Dalibor Slovák, Stanislav Plšek

E-ISSN: 2415-1513 90 Volume 9, 2018



usbdefs_ep0_buff.h – In set is included definition 
textures Ctrl_TRF_SETUP and data - faggot for answer 
Ctrl_TR_DATA for Controll transfer.  
usbdefs_std_dsc.h – Content of file is description of 
descriptors arrangement as well as definition values for 
input and check out endpoints. This file includes all 
variables for full structures of endpoints. 
   usbctrltrf.h a .c - The heart of this module is routine 
USBCtrlEPService (void), which serves only the 
following three operations - EP0 SETUP EP0 OUT EP0 
IN and calls the appropriate routines.  
   In the case of an ordinary programming of any USB 
classes of devices (HID, MSD, CDC) do not require any 
intervention without a deeper study. On the contrary any 
changes can be detrimental. 
   main.c - Function main() includes infinite program 
central loop while(1). In this loop are procedures 
USBTASKS(void) and void ProcessIO(void). All 
requisite tasks in programmatic succession are given 
through instructions in main function source code. 
   usb_compile_time_validation.h – Endpoint descriptors 
size verification according to standard of USB. Then 
descriptor reach size can be either 8, 16, 32 or 64 bytes.  
  usbcfg.h – By the help of this file is performed 
endpoint configuration of device. So it is set value and 
default setting of endpoint zero and further then 
endpoint assignment for configuration descriptor and 
further also values for interface descriptors and their 
endpoints. 
  usbdsc.h a .c - This modulus includes information 
about USB descriptors. In set usbdsc.h are included 
definition structures of configuration and globalize 
descriptors here for visibility and in of others modulus 
through key word  external.  
usbmap.h a .c - This module presents USB memory 
manager. Allocation of USB endpoint  and their buffer 
descriptors proceeds dynamically at compile time with 
usage some parameters defined in usbcfg.h.  
  usbdrv.c a .h - This module is in charge of USB 
communication and functional integration of other 
modules.  
  usb9.c a .h - This module handles standard USB 
requests coming through EP0 under Chapter 9 of the 
USB 2.0 specification [3].  
  usbctrltrf.h a .c - The heart of this module is routine 
USBCtrlEPService (void), which serves only the 
following three operations - EP0 SETUP EP0 OUT EP0 
IN and calls the appropriate routines.  
In the case of an ordinary programming of any of the 
classes of devices (HID, MSD, CDC) do not require any 
intervention. Without a deeper study on the contrary any 
changes can be detrimental. In the case of programming 
a Universal serial bus digital binary values control pulse 

width modulation utility were some interventions 
required and they are described in my other paper. 
Modules described below relate to each class. The 
program usage depends on what category programmed 
device is included. 

6 Conclusion 
   The paper is second part for paper Universal serial bus 
digital binary values control pulse width modulation 
utility. We created device for control lightning and 
water fountain systems. We tested electric motors too. 
Our tests were successful. We have protected our device 
by CZ patent and CZ utility model. Our device is 
entered at European patent office too.  Presently we 
develop electric voltage transducers for another forms of 
usage of our device. The description of hardware for the 
Universal serial bus digital binary values control pulse 
width modulation utility firmware is in next paper. This 
work was supported by the Ministry of Education, 
Youth and Sports of the Czech Republic within the 
National Sustainability Programme project No. LO1303 
(MSMT-7778/2014). 
 
References: 
[1] D. Slovak, “General-purpose single-chip device” CZ Patent No. 304233. 

15.1.2014.  
[2] D. Slovak, “General-purpose single-chip device”. Czech republic. 

Utility model No. 024542. 12.11.2012.  
[3] D. Slovak, “USB MIDI Lights Device”. in Proc Recent Research in 

Automatic Control. Lanzarote, Canary Islands: WSEAS Press, 2011, pp. 
300-306. ISBN 978-1-61804-004-6. 

[4] D. Slovak, “Protocol MIDI and stage equipment”, Tomas Bata 
University, Faculty of Applied Informatics, Department of Applied 
Infomatics, 2008, 64 p., Thesis supervisor prof. Ing. Vladimír Vašek, 
CSc. 

[5] D. Slovak, “Pulse Width Modulation Control Voltage Interface,” in 
Proc. Recent Advanced in Communication, Circuits and Technological 
Innovations. Paris, France: North Atlantic University Union, 2012, pp. 
252-257. 

[6] R. Tzeneva, Y. Slavtchev, N. Mastorakis, V.Mladenov, “New Design of 
Aluminum Bolted Busbar Connections”, Proceedings of the 13th 
WSEAS International Conference on CIRCUITS, WSEAS CSCC 
Multiconference, Rhodos Island,Greece, July 22-24, 2009, pp. 172-177 

[7]  D. Slovak, “Universal serial bus musical instrument digital interface 
hardware,” International Journal of Mechanics. Journal [online]. 5(4), 
pp. 294-301.    

[8] T. Modegi, Shun-ichi Iisaku, Proposals of MIDI Coding and its 
Application for Audio Authoring, MMCS, IEEE International 
Conference, pp 305 – 314 , 1998. 

[9] Universal Serial Bus specification.pdf, Available:  http://www.usb.org 
[10] Universal Serial Bus Device Class Definition for Audio Devices.pdf 

Available:  
http://www.usb.org/developers/docs/devclass_docs/audio10.pdf 

[11] Universal Serial Bus Device Class Definition for MIDI Devices.pdf 
Available: 
http://www.usb.org/developers/docs/devclass_docs/midi10.pdf 

[12] STORK, M., HRUSAK, J., MAYER, D.: „Nonlinearly Coupled 
Oscillators and State Space Energy Approach“. 14th WSEAS 
International Conference on SYSTEMS (Part of the 14th WSEAS 
CSCC Multiconference), Corfu Island, Greece, 2010. 

WSEAS TRANSACTIONS on ELECTRONICS Dalibor Slovák, Stanislav Plšek

E-ISSN: 2415-1513 91 Volume 9, 2018

http://www.usb.org/
http://www.usb.org/developers/docs/devclass_docs/audio10.pdf
http://www.usb.org/developers/docs/devclass_docs/midi10.pdf



